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Figure 1: Flying quadcopter and stereo-view rendering

Abstract

Virtual reality (VR) lets us experience things we can’t do in the
real world. Demos at SIGGRAPH have shown tightrope walking
above a city, hanging out with dragons, and even flying like a bird.
But what if VR could let us truly experience flying through the real
world? In this work we propose to develop a tightly integrated low-
latency system to enable a quadcopter to be piloted using a virtual
reality interface, letting the user immersively inhabit the vehicles
point of view. Full-surround visibility is provided by orienting the
vehicle to track the users head, and stabilization and latency hid-
ing are provided by a wide-field-of-view camera array coupled to
a high-performance view synthesis engine that decouples the view
shown to the user from the pose of the vehicle. Challenges include
latency compensation; artifact-free view synthesis from depth and
video; stabilizing video with imperfect motion tracking; and using
video from fast-moving cameras. Surmounting these challenges
and achieving an authentic immersive experience will require go-
ing beyond combining available hardware components and existing
algorithms. Rather, we will take a minimalistic approach to hard-
ware selection and primarly focus on maximizing performance of
low-cost platforms. Taking advantage of vehicle and head pose data
streams, motion prediction and image warping of sparse image se-
quences will be exploited to optimize required data transfer and on-
board hardware needed for immersive environment reconstruction
on the ground.

1 Introduction

Over the past decade there has been a surge in production of
low-cost single board computers (SBCs) and small sensor pack-
ages. This has opened up a world of possibilities for designing
various compact systems capable of performing sophisticated vi-
sion/learning/robotics tasks. Exploring the range of such systems is
increasingly important to fully recognize limitations of individual
components and neccessary improvements to software pipelines.
This technological evolution has been a boon to both the devel-
opment of high-quality VR systems, such as the Oculus Rift (fig-
ure 2), and small multi-rotor vehicles. Multi-rotor development
has been ongoing for decades but only now have low cost multi-
copter systems relying on efficient onboard computingbecome pos-
sible. This new climate is marked by widespread multi-copter use in

aerial photography and mapping [Siebert and Teizer 2014], vision-
based aerial inspection [Bodla et al. 2014; Kuo et al. 2013], au-
tonomous high-altitude navigation [Rengarajan and Anitha 2013;
Raj and Katiyar 2014], and even autonomous navigaion in low alti-
tude at close proximity to obstacles [Scaramuzza et al. 2013; Meier
et al. 2011a; Agrawal et al. 2007].
Although research on quadcopter navigation and flight has been sig-
nificant the focus on integrated flight viewing systems has been
limited. Attempts to create immersive flight experiences do ex-
ist within the growing RC/DIY/Maker community [Benchoff 2013;
Mikkelsen 2013], but have not achieved low-latency, mostly use
analog video streams for limited real-time flight viewing, use servo
actuated cameras for view direction changes, and rely mainly on a
bolt-together approach providing a low-fidelity experience with re-
stricted domain of comfortable use. The goal of this project is to
harness minimal commodity hardware letting a user pilot a quad-
copter via a VR interface that immerses them in the real world
with the point of view of the vehicle. In contrast to approaches in
the hobbyist community, we will mainly employ techniques on the
software side to provide an optimally integrated immersive view-
ing system. Multi-rotors are agile vehicles which can reach high
speeds, are capable of performing complicated maneuvers, and can
cover a wide range of perspectives during a single flight. Special
focus on this wide range of motion we be leveraged to povide more
direct human-vehicle integation. Development of a more exten-
sive environment sensing system than previous platforms for mo-
bile control and remote view reconstruction [Kelly et al. 2011] will
also be required.
Our main contribution here is a systems solution (hardware, soft-
ware, and algorithms). The system includes an autonomous quad-
copter outfitted with an array of cameras, a low-bandwidth radio
link to the ground, and a VR application that runs on a high-end
GPU, using a real-time view interpolation engine to generate sta-
bilized views that track the user’s head motion at VR rates. The
user will be free to look around the vehicle’s environment, with
the view interpolation system absorbing the lag between head mo-
tion and vehicle motion. This is an ambitious engineering project
which will bring together several technologies: view interpolation,
video stabilization, and flight control will have to be tightly orches-
trated, with careful attention to latencies and bandwidths in every
part of the system. Simply bolting together existing methods for
these three subsystems will not suffice to meet the extreme perfor-
mance demands of VR and vehicle control. Novel research will



Figure 2: Oculus Rift Headset, Coordinate System, and Tuscany
Demo Example

be required to build an integrated system that streams selected pix-
els through a highly constrained communication link, uses them to
asynchronously update a model sufficient for view synthesis, and
synthesizes views for the user’s two eyes in a tight, low-latency
loop.

2 Prior Work

Some of the key technologies required for this project are head-
tracked stereo display, real-time stereo, real-time view synthesis,
environment reconstruction, video stabilization, and aerial vehicle
control. While there has been much work focused on these areas in
isolation, there has been far less attention on optimal integration for
real-time application.

2.1 Head-Tracked Stereo Display

Head-tracked stereo display will be handled by existing technology,
and the Oculus Rift VR package is a prime candidate for this part of
our pipeline (figures 2). The Oculus system uses low-cost MEMS
sensors for maintaining human head orientation, with gyroscope in-
tegration and compensation of dead reckoning, tilt, and yaw errors
using gravity and magnetic fields of the Earth. Predictive tracking
methods are used to dramatically reduce latency and improve user
experience. Predictive tracking employs constant acceleration
kinematics for up to 50ms forecasting with imperceptible error,
using only a few milliseconds of past data [LaValle et al. 2014].
Lower fidelity options also exist, such as Google Cardboard, which
uses an Android-based smartphone to perform head-tracked stereo
rendering. As with the Oculus, low-cost sensors, which are widely
used in smartphones, are harnessed for head-pose tracking. A more
compact system, integrating a smartphone-based rendering engine,

is worth exploring for future work.

2.2 Real-Time Stereo

A great deal of work has been done on real-time stereo recon-
struction; the plane-sweep algorithm is a popular method in real-
time applications [Pollefeys et al. 2007], known for its simplic-
ity and ease of parallelizability. The primary operation of the al-
gorithm, rendering images onto planes, is an operation at which
the GPU is particularly adept. Recent work demonstrates a multi-
view plane-sweep-based stereo algorithm which correctly handles
slanted surfaces and runs in real-time on the GPU [Gallup et al.
2014]. This involves determining the scene’s principal plane ori-
entations, estimating depth by performing plane-sweep for each di-
rection, and combining multi-directional results. Other interesting
work is shown in [Yang and Pollefeys 2003], which combines GPU
acceleration and multi-resolution stereo to enhance quality of pixel
matching and reduce artifacts from depth discontinuities. The al-
gorithm described runs in real-time and would be well suited for
our GPU equipped Jetson SBC. Stemming from easy extension
to multi-baseline stereo this method would also scale well with
additional cameras. Similarly, following a plane-sweep approach
extended by truncated summed-squared-difference (SSD) scores,
shiftable windows, and best camera selection, real-time pixel-wise
depth value estimation has been demonstrated [Woetzel and Koch
2004]. This work relies on multi-stereo input, and through mini-
mizing aggregated per-pixel matching cost for different views max-
imally probable depth values for a given cameras projection center
are computed. Truncation of the SSD scores is used to limit the
influence of outliers due to image noise and non-diffuse surfaces.
This is accelerated on the GPU by exploiting independence of pixel
intensities and achieves rates of 20Hz.

2.3 Real-time View Synthesis

Approaches for determining a new view for a virtual camera are
quite varied, although warping, or transforming, cached frames is
a common component. Accounting for arbitrary trasformations
can be done with image-based rendering (IBR) techniques [Zitnick
et al. 2014], projective geometry methods [Saito et al. 2002], us-
ing dense image correspondences [Lipski et al. 2011], with dis-
parity maps [Naemura et al. 2002; Chen and Williams 1994], or
by exploiting a few linear correspondences [Avidan and Shashua
1998]. As previously demonstrated [Chen and Williams 1994],
known camera transformations and range data can be used to auto-
matically establish pixel correspondences within overlapping cam-
era views and subsequently generate associated pixel offset vec-
tors. Linearly interpolating these offset vectors and mapping pixels
in accordance with these offsets provides an approximate interme-
diate view. This approach, referred to as ”forward mapping”, is
simple to implement and allows for immediate interpolation once
disparity maps are calculated, but can result in significant holes
around depth discontinuities. On the other hand, ”backward map-
ping”, as described in [Martin and Roy 2008; Laveau and Faugeras
2004], could prove more successful particularly in applications in-
volving live camera feeds. In a similar vein, [Rodriquez et al. 2006]
describes a video compression algorithm where camera homogra-
phies are derived from known vehicle motion and used to construct
plausible future camera images. Early work, focused on virtual
scene reconstruction [Szeliski and Kang 1995], describes a simple
image stitching approach for calibrated cameras. This also relies
on 2D image transformations and minimization of differences in
pixel intensities for alignments, and a bilinear weighting function
for blending images together. This work also describes a method
for recovering projective depth from structure from motion. Both



of these contributions will prove helpful in performing model con-
struction and view interpolation.

2.4 Environment Reconstruction

In our proposed system view synthesis and environment reconstruc-
tion are closely coupled, with much overlap in the literature. En-
vironment reconstruction can be achieved by simply generating a
coarse 3D model, which can exploit depth data from stereo imag-
ing. However, avoidance of artifacts in areas with unreliable depth
is better developed in offline systems [Chaurasia et al. 2013]. In
this previous work an approach using oversegmentation of input
images, creation of superpixels of homogeneous color content, and
depth-synthesis from traversal of the superpixel graph structure,
performs well for poorly reconstructed regions. Additionally, there
has been some work demonstrating parallel scene reconstruction
and view synthesis using the plane-sweep approach [Yang et al.
2002]. However, this relied on calibrated reference images and
distributed computing with extensive hardware requirements. 3D
reconstruction with free-viewpoint synthesis can also be performed
using the image-based hulls method [Matusik et al. 2000] combined
with inter-frame prediction to perform viewing updates [Wurmlin
et al. 2003]. This previous work exploits spatio-temporal coher-
ence of multiple cameras for acceleration and error correction. Re-
construction with integrated treatment of depth artifacts has also
been demonstrated [Merrell et al. 2007], wherein depth estimates
for each pixel are selected which minimize violations of visibility
constraints. Some quite promising work has recently performed
volumetric 3D mapping in real-time on a dual-core CPU [Stein-
brucker et al. 2014]. Here an octree data structure is used, which
allows representation of the scene at multiple scales and growth
of the reconstruction volume dynamically. This work also reduces
memory footprint and accelerates data fusion. The work performed
in [Kelly et al. 2011] describes a practical implementation for scene
reconstruction using some of the aforementioned methods. Here
range data from a LIDAR sensor is triangulated to construct coarse
scene geometry and realistic textures captured from an onboard
camera are then projected onto the scene. However, LIDAR pro-
vides reduced depth and temporal resolution which may be suited
for a slowly moving ground vehicle but inadequate for our platform.

2.5 Video Stabilization

A particularly interesting work on video stabilization is featured
in [Liu and Jin 2014]. This uses structure from motion to con-
struct a 3D camera path and least-squares optimization to com-
pute a spatially varying warp to match cached images and avoid
deforming content within reference images. Being that our pipeline
will include processes that provide knowledge of camera trajectory,
and view synthesis will rely on reference image warping, a sim-
ilar method would integrate well. Similarly, a robust motion es-
timation algorithm is used to construct geometric transformations
which ensure video stability on a micro aerial vehicle in other recent
work [Aguilar and Angulo 2013]. Additionally, work described in
[Stupich 2014], could also prove helpful. Here an algorithm for
modelling and correcting video artifacts caused by movements of
rolling shutter cameras is described. Affine transformations are
used to model full frame camera movements, equivalent to a warp-
ing approach, and sinusoids model high frequency camera move-
ments and vibrations.

2.6 Vehicle Control

Low-cost flight control hardware packages are also seeing
widespread development, similarly harnessing sensor systems used
in smartphones. A prime example here is the Pixhawk flight man-

agement unit (FMU), an opensource system developed with pri-
mary focus on tight integration of vision processing within the vehi-
cle control loop. This FMU has demonstrated the ability for parallel
image processing along with interial measurement information fu-
sion to perform tasks such as localization, pattern recognition, and
obstacle avoidance [Meier et al. 2011a; Meier et al. 2011b]. This
existing hardware is selected to manage flight control of our vehi-
cle. There has also been some development on remote-control in-
terfaces for driving robots, including systems that provide latency-
compensated first-person views, using an approach generally sim-
ilar to the proposed system [Kelly et al. 2011]. However, as this
used a large slow-moving ground rover little attention to weight
considerations was required. We propose to provide an immersive
experience for the operator, rather than simply a first-person view
on a monitor. Our faster-responding vehicle will require smaller de-
viations between virtual and real viewpoints, enabling the system to
work with lightweight sensors that can fly on a small vehicle and to
achieve the demanding performance needed to create the illusion of
immersion.

3 System Overview

A block diagram of our system is shown in figure 3. Physically,
it has two parts: a UAV carries a camera array, an onboard com-
puter, and a flight controller; on the ground there is a high-end
graphics workstation connected to an Oculus VR system. The two
parts are connected by two radio links: a video downlink and a low-
bandwidth bidirectional link for control data. The hardware options
for handling communication links and for the onboard SBC, as dis-
cussed previously, have a wide price range. Additionally, cameras
in the viewing system are not limited to the standard RGB vari-
ety, and could include the increasingly more prevalent and compact
depth cameras. The viewing system needs to provide environmen-
tal information neccessary for model construction on the ground,
but the combination of components able to provide this data is not
unique. Narrowing in on a particular configuration with focus on
optimal weight, power, and bandwidth requirements will be one of
our challenges.
Each part of our system has a fast loop that handles low-latency
interaction with the real world. The UAV runs a 500 Hz flight con-
trol loop in separate hardware that communicates with the onboard
computer via a serial link; the GPU-accelerated view synthesis loop
feeding the VR headset runs at 75Hz. The quoted rates are from the
Pixhawk flight controller and Oculus Rift VR system but subject
to variation with different hardware selection. The two fast loops
are connected by a slower asynchronous system that has the job of
carrying video data from air to ground while absorbing the latency
between them. The onboard computer reads video data from a sub-
set of cameras, selects the most relevant parts subject to bandwidth
constraints, and transmits the data to the ground. On the ground
side, our scene modeling system uses incoming video and vehicle
pose to build a weak 3D model of the scene and caches the images
for use by the view synthesis system. The ground system also uses
head-tracking data from the VR system to determine requested ve-
hicle motion and transmits these commands back to the UAV.
Depending on the carrier signal and equipment used for video trans-
mission, streaming image sequences can suffer air-to-ground time
delays ranging from near zero (sub-millisecond) up to around a
hundred milliseconds. This upper limit of around 10Hz is in con-
trast to most available small cameras, which have minimum capture
rates of around 30Hz. With a vehicle speed around 10m/s and de-
lay of 100ms, we require data transmitted to ground be sufficient
for reconstructing an environment model with a minimal radius of
one meter. Thus, our camera array will have to capture views at
multiple angles and provide depth data as well. On the other hand,
our low-bandwidth radio link provides vehicle pose data at 30Hz.



Figure 3: System block diagram: Video (Yellow), Head-Tracking
(Red), Vehicle Pose (Blue)

Along with control input transmission, based on head-tracking data,
vehicle pose streamed to ground enables derivation of view trans-
formations using orientation and position changes relative to previ-
ously cached states. Our onboard SBC will have to select appropri-
ate cameras based on head-tracking data, cache images and apply
time-stamps, and possibly provide depth data to ground as well.
Whether depth map construction is performed on the ground or on-
board depends on results of future experimentation. The ground
system will process this data, which will need correction for ar-
tifacts from gaps in environmental information and rolling-shutter
effects from fast-moving cameras. Additionally, model construc-
tion, view synthesis, and possible depth map generation will need
to be performed within a time interval on the order of 100ms. Stabi-
lization of video, despite imperfect motion tracking, will also need
to be performed. Filtering out motion using vehicle pose data will
provide a coarse initial treatment but likely need further refinement
within our view synthesis engine. High-performance graphics hard-
ware has been shown to accelerate depth-map generation and scene
reconstruction, acheiving combined times around 40ms [Merrell
et al. 2007].

4 System Hardware

Extensive research on available hardware is required to achieve de-
sired rendering rates. While finding a combination of hardware able
to provide an immersive flight experience of reasonable quality may
be possible with extensive budget, we opt for low-cost commodity
components. The main objective here on is achieving the best per-
formance possible from a limited budget and guidance from theo-
retical considerations.

Flight Control Unit: The flight controller is the quadcopter brain,
in charge of running a PID loop to correct vehicle attitude based
on deviations of sensor determined state from control inputs. The
price range and compute power available in these units varies sig-
nificantly, with quite limited controllers, in the $20-$50 range, ded-
icated strictly to flight control for hobbyist use and others, in the

Components Specifications
Microprocessor 32-bit STM32F427 Cortex M4 core with FPU

168 MHz/256 KB RAM/2 MB Flash
32-bit STM32F103 failsafe co-processor

Sensors ST Micro L3GD20 3-axis 16-bit gyro
ST Micro LSM303D 3-axis 14-bit accel/mag

Invensense MPU 6000 3-axis accel/gyro
MEAS MS5611 barometer

Interfaces 5x UART (serial ports)
2x CAN

Spektrum DSM/DSM2/DSM-X
Futaba S.BUS compatible I/O

PPM sum signal
RSSI (PWM or voltage) input

I2C
SPI

3.3 and 6.6V ADC inputs
External microUSB port

Power System Ideal diode controller with automatic failover
Servo rail high-power (7V) and high-current ready

Weight & Dimensions Weight: 38g
Width: 50 mm

Thickness: 15.5 mm
Length: 81.5 mm

Table 1: Pixhawk Details

$500-$1000 range, employing multiple inertial navigation systems
for redundancy and highly tuned for video stability. Our needs in-
clude extra computing power for our custom software, an open-
source package, and interfaces for additional onboard hardware.
We select the $200 Pixhawk flight management unit (FMU) [Meier
et al. 2011a; Meier et al. 2011b], intially developed with primary
focus on tight vision sensor integration. The FMU runs a PID loop
at 500Hz with sensor fusion performed using an Extended Kalman
Filter. Onboard sensors include a barometer, two accelerometers,
and magnetometer, which provide data for vehicle pose estimation.
A 1.5 MBps bandwidth UART interface on the FMU enables send-
ing vehicle pose data to the onboard computer at up to 60Hz. To
our knowledge, this FMU provides the most versatile package for
relatively low cost. Refer to table 1 for more interface and process-
ing details.
Camera Array: Determining the required components for our view-
ing system will be closely coupled to the development of our view
interpolation and environment reconstruction pipeline, and optimiz-
ing for minimal required components is one of the challenges of
this project. Following previously mentioned back of the envelope
calculations, we are on the line of where depth cameras can be use-
ful. The maximum range of these devices is typically on the order
of a few meters. Small depth cameras are a relatively new, still
developing, technology and hold promise for providing dedicated
components for capturing depth data need for environment recon-
struction. Due to their more limited range of utility we will start
with a single stereo camera (ZED), each sensor fitted with a fisheye
lens, and scale up from there depending on results. However, depth
cameras will be explored further for higher resolution reconstruc-
tion at close range. The ZED camera boasts up to 20m range due
to its 0.1m baseline. Operation on USB 3.0, which is true of in-
creasingly more commodity cameras, provides a 10x data transfer
speedup over legacy USB 2.0.
Onboard Computer: Our onboard computer will need to handle
moderate image processing, control over the camera array, timing
for synchronization, and provide interfaces for other onboard elec-
tronics. To take advantage of the increasing availability of USB 3.0
compatible cameras, providing higher speed and bandwidth, this
interface is desired over USB 2.0. CUDA compatibility is desired
for image processing, along with its inherent versatility for other
computation. We select the Jetson TK1 board, providing superior



performance among single board computers (SBCs) for the low cost
of $200. This SBC is equipped with a USB 3.0 port, 2.5GHz quad-
core ARM15 CPU, and 192 CUDA core Kepler GPU with a max-
imum memory clock rate of 924MHz. Considering the speeds on
the SBC processing units, the TK1 should provide ample compute
power for pixel selection and vehicle pose tagging at the desired
rates. The ZED camera SDK includes depth-map generation previ-
ously demonstrated in real-time on the Jetson TK1 [Azzam 2015].
Depending on the specific pixel sampling approach this SBC should
also leave room for additional in air image processing, possibly
for partial motion blurr elimination, before streaming pixels to the
ground.
Wireless Data Links: Equipment for video, vehicle state, control,
and head-tracking data is required for our system. The video data
link is primarily established using analog video transmission equip-
ment, as dedicated digital video equipment comes at a large price.
The analog approach, however, presents time delay challenges and
low resolution imaging. The Connex HD Video Downlink pack-
age operating on 5.8GHz carrier signal provides a video link capa-
ble of 1080p resolution at 60fps with sub-millisecond latency, but
comes with a $1500 price point. Without dedicated digital video
equipment the time delay constitutes a possible botteneck in our
pipeline, whether using analog or alternatively short-range WiFi.
Initial approaches here will focus primarily on using vehicle and
head motion prediction and subsequent future view estimation for
latency compensation. WiFi and analog options are already avail-
able in our quadcopter build, so these will be explored in union with
predictive view synthesis. However, from the previous considera-
tions this part of our system will likely require experimentation with
alternative hardware options. Bi-directional telemetry transmission
is typically perfomed using radio modules operating around 915
MHz. For this component we would like update rates faster than
video in order to facilitate vehicle trajectory interpolation for view-
synthesis. We also need to accomodate head-tracking data trans-
mission, but this presents only a small bandwidth requirement. We
select the 3DR telemetry package, providing radio modules com-
patible with the Pixhawk FMU and capable of a 30Hz update rate.
Ground Station: On the ground we will need to construct our
environment model, synthesize new views, correctly synchronize
views with motion, and fuse data streams to predict virtual camera
poses. Access to a high-performance workstation is already avail-
able, which is equipped with a Titan GPU, 64 GB RAM, and two
Intel i7 CPUs providing 32 total virtual cores. Prior tests on this
worksation show that rendering rates well above the maximum rates
possible for the Oculus Rift Headset are easily achievable. Given
this hardware platform, we will allocate separate cores and threads
for simultaneous data fusion, timing and synchronization, model
construction with asynchronous updating, and rendering to our VR
headset.

5 System Software

There exist a number of software packages that will prove helpful
in development of our complete system. We will have a number
of separate processes, both in air and on ground, and data streams
coming coming from wireless links and head-tracking. On ground
data streams will need to be fused in order to predict virtual cam-
era poses, correctly track quadcopter trajectory, and to calculate re-
quired head-pose based control inputs. Additionally, each separate
software layer will need to be tightly integrated and all processes
monitored. Opensource solutions are desired for customizability
and portability.
Flight Control Firmware: Our flight controller requires appropri-
ate firmware to run the PID loop and interface with our onboard

Components Model
Flight Controller Pixhawk

GPS Receiver 3DR NEO-7
Motors Lumenier FM4006-13 740KV

Electronic Speed Controllers Lumenier 30A SimonK Firmware 5V/3A BEC
Radio Receiver FrSky X8R 8/16CH 2.4 GHz

Telemetry Module 3DR 433 MHz
Video Transmitter Fatshark 5.8 GHz 600 mW

Propellers APC 12” with 6” pitch
Analog Camera Lumenier CMOS 720TVL

Frame Lumenier QAV400 G10
Arms Lumenier QAV520 G10
Sonar MaxBotix XL-EZ4

Flight Battery Lumenier LIPO 14.8V 3300mAh
Video Battery Lumenier LIPO 12V 1250mAh

Computer Jetson TK1

Table 2: Quadcopter Components

SBC. We also want the ability to integrate custom software with
firmware. The Pixhawk flight controller is compatible with a few
different firmware options, the most notable being PX4 Autopilot
[Meier 2012] and ArduCopter [Osborne 2012]. Both of these flight
stacks are opensource and run ontop of the native NuttX RTOS,
which provides a UNIX style minimal operating system and uses
the MavLink protocol to communicate with ground control soft-
ware. Currently the ArduCopter firmware has been selected, as it is
compatible with our choice of ground control software the platform
portable APMPlanner2.
Middleware Layer: Our onboard SBC requires a layer to interface
with the flight controller and oversee the various processes compos-
ing our airborne subsystem. Likewise, onground processes need to
be monitored and separate data streams fused to determine head-
pose based control inputs. ROS (Robot Operating System) pro-
vides an extensive library and toolkit for developing robotic appli-
cations [Quigley et al. 2009]. In particular, ROS provides many
tools for message-passing, simulation, and visualization which will
prove useful for unifying pose data from sensors in separate parts
of our system under a single framework. We will use ROS to run an
onground PID loop, and fuse head and vehicle pose data, to track
camera ego-motion and calculate necessary flight corrections based
on head-tracking signals. Camera array calibration will also be sim-
plified using ROS.
VR Software: We will need a software layer for the VR system
to handle general head-tracking data, head-pose prediction, and
perspective-correct rendering for 3D stereo viewing. There are
two software candiates for handling stereo display and exposing
head-tracking data. The Oculus SDK could certainly accomplish
this, but it also presents limitation concerning platform portability.
OpenHMD is an opensource alternative which is worth exploring.
This is not as well tuned to the Oculus VR system but reduces re-
strictions on operating system selection for our ground workstation.
Rendering & Simulation: Model construction will need direct ac-
cess to depth and image data acquired onboard as well as virtual
camera orientation updates. The construction process will be made
easier using available libraries for handling lighting, geometric
primitives, and incorporating physics of our vehicle. Additonally,
rather than relying completely on physical testing, simulation soft-
ware which provides accurate flight physics and hardware-in-loop
interfacing can be leveraged. Gazebo is an opensource robotics
simulation framework, with an integrated physics engine specifi-
cally suited to our focus [Koenig and Howard 2004]. This frame-
work, like ROS, is supported by the Open Source Robotics Commu-
nity and the two can be seamlessly integrated. Rendering is handled
by OGRE with particular focus on physically accurate simulation,
in contrast to more perceptually focused game engines.



Figure 4: Quadcopter Frame, Powertrain, Complete Build, and
Ground Gear

6 System Construction and Setup

For this work a consumer-grade small quadcopter has been built
(figure 4, bottom-left). This used low-cost commodity powertrain
components (motors/ESCs), flight control hardware, and video data
transmission equipment. The frame (figure 4, top-left) consists of
high-strength laser-cut G10 plastic, and a closer look at the pow-
ertrain wiring is shown top-right in figure 4. Using a small con-
sumer GPS module, remote motor control inputs can be converted
into position control inputs, enabling trajectory planning and fail-
safe functionality such as return-to-launch mode. Combined cost
of quadcopter components came to around $1000 and with build
completition taking around a week. Refer to table 2 for build com-
ponent details. Relatively simple components can be used for re-
mote control and perspective-correct viewing, shown bottom-right
in figure 4. Some additional soldering and electrical wiring was
required for completing the powertrain. Motors are individually
wired through Electronic Speed Controllers (ESCs) which are sol-
dered to a central power distribution board. This board serves as
the frame foundation, also taking power input from the flight and
auxillary batteries and providing power to all onboard electronics.
The Pixhawk flight controller provides a number of serial interfaces
through which the onboard SBC can communicate. We have al-
ready tested this interface with currently owned SBCs, and con-
nection is achieved through either USB connection, with an FTDI
converter, or directly to a UART port on the SBC. This provies a 1.5
MBps link for direct sensor data transmission to the onboard com-
puter to be used for further image processing and filtering. Cameras
can be directly connected to the SBC USB ports, although scaling
up the camera array will likely require a multi-port hub or switching
interfaces. Synchronization is achieved either on the SBC through
software or directly on the camera if stereo packages are used.

6.1 Quadcopter Tuning

Powertrain components were selected to keep the vehicle on the
smaller side while maximizing lift capability and hover time.
740KV brushless motors and 30A ESCs, with built in 5V/3A bat-
tery eliminator circuits, from Lumenier were selected and frame
arms were extended to accomodate 12 inch propellers. With 6 inch
propeller pitch this platform is capable of lifting approximately 3kg
with a 15 minute hover time. These values are determined from
analysis similar to that seen in [Fay 2001; Gibiansky 2012], with the
help of the online tool ”eCalc” [Meuller 2004]. Throttle curves are

Figure 5: Throttle curve plot

shown in figure 5. For stable flight our quadcopter runs a PID loop
on the Pixhawk FMU. The PID parameters require precise tuning,
and baseline values were estimated using automatic tuning func-
tionality within Ardupilot firmware. In a controlled environment,
various vehicle orientations are explored and tuning parameters are
corrected based on deviation from sensor determined pose.

6.2 Multi-camera Calibration

Although initially we will start with a single stereo camera (ZED),
providing a full range of view will require additional monocular
cameras in our array. As more components are incorporated into
our viewing system precise calibration will become increasingly
important. There has been much work focused on multi-camera
calibration [Heng et al. 2014; Pless 2003; Li et al. 2013; Clipp
et al. 2014], and a set of dedicated tools developed in [Heng et al.
2014] have been made available through ROS. Calibration using
these tools is straight forward, relying on detection of a checkboard
pattern, calculating camera instrinsics based on observed distor-
tion in straight lines, and subsequent rectification of images. The
ROS middleware provides a communication layer for handling im-
age processing and pose estimation, which we will use to unify our
image and both vehicle and head pose data acquisition processes.
Furthermore, to maximize the FOV of our camera array we would
like to minimize the amount of overlap between them. This is an un-
derstanable objective in order to take advantage of the limited real-
estate and lift capacity on the quadrotor. The work done in [Clipp
et al. 2014] demonstrates a minimum solution to relative stereo
camera poses with small FOV overlap. This is achieved using lim-
ited spatial correspondances between different camera views with
multiple 2D temporal correspondances. This work also demon-
strates utility in determining structure from motion in real-time, and
thus could prove helpful in optimizing the configuration of our cam-
era setup as well as correcting for incomplete depth information.



Figure 6: ROS Camera Calibration

7 View Interpolation Loop and Ground Sub-
system

7.1 Ground Subsystem

The ground subsystem will manage a number of separate processes
which are closely coupled to view interpolation. These include
model construction from depth and images, pose prediction with
view synchronization, and asynchronous scene updates. Additional
processes running on the ground station including head-pose pre-
diction, calculation and transmission of head-tracked control in-
puts, and video stabilization are discussed in subsequent sections.
Data transmitted from the vehicle will be cached with associated
time, vehicle-pose, and head-pose, for asynchronous processing. In
this section we assume depth data is generated in the air although
this could be shited to the ground without problem.
Model Construction: We pursue 3D model construction, as op-
posed to purely image-based construction, to aid in latency absorp-
tion from transmission delays. Predictive tracking of camera mo-
tion through a 3D scene will enable intermediate view synthesis
at desired VR rendering rates. Exploiting depth data from stereo
imaging will provide means to at least a weak geometric repre-
sentation of our scene. As mentioned in section 2.4, the quality
of our reconstruction can be improved through fusion of multiple
depth maps, by exploiting coherence between sequences of frames,
or leveraging coherence between overlapping images with differ-
ent viewpoints. Choice of depth data structure is paramount and
needs to allow for adaptive refinement, progressive updates with
additional data, and low bandwidth requirement. These considera-
tions suggest following the approach in [Steinbrucker et al. 2014],
using an signed distance function and octree data structure. This
approach would accomodate areas with unreliable depth informa-
tion, by treating these sections with simple texture projection onto
cubes. The simplicity and reasonable quality of this treatment is
also shown in [Kelly et al. 2011]. We can confidently rely on in-air
depth information updates at around 10Hz, due to latency of our
video link, although this is a conservative estimate.
Pose Prediction & View Synchronization: Pose prediction will
leverage the embedded Oculus sensors, some of which are iden-
tical to those used on the Pixhawk FMU, to provide data for fu-
sion and subsequent pose estimation. The native predictive tracking
loop will be exploited to reduce latency in vehicle response using

Figure 7: Diagram of Ground Subsystem

forecasted head-pose. As mentioned in section 5, vehicle and head-
tracking sensor data will be fused within ROS and PID loop outputs
will provide head-based flight corrections. Ground views will need
to be predicted sufficiently far in the future to offset video transmis-
sion latency. While zero latency would be ideal, we can confidently
predict head-pose 50ms ahead using the Oculus system. Vehicle-
pose will be predicted as well using a velocity driven dynamics
model, which can similarly be run within the ROS framework. Con-
trol inputs calculated from the PID loop will be converted into joy-
stick or radio controller inputs and sent through our telemetry link
to the vehicle. Synchronization will be acheived through compari-
son of ground and air GPS time updates, and tracking time intervals
between updates using system clocks. Precise prediction times will
be determined using time-stamps on cached data and time since
new view request.
Asynchronous Scene Updates: Asynchronous updates to our
model will help us to meet the rendering rate requirements of our
VR system and also provide a more immersive experience. Our
suggested depth data structure is selected to facilitate this process.
Here we will rely on analysis of cached image and depth data for
progressive model refinement. Although we estimate a 10Hz trans-
mission rate on our video link, depth-map generation and image
capture can be done onboard at around 30Hz. Effects of band-
width limitations here will need to be further explored but this could
possibly provide enough cached data in a single transmission cy-
cle from which to derive a more complete environment construc-
tion. Following a coarse construction from the most recent data,
refinement can be performed using Structure from Motion (SfM)
on longer data sequences. Regardless of bandwidth limitations, we
will rely on this approach using available cached data. Addition-
ally, model updates will be timed corresponding to synchronization
considerations. Stored data which corresponds to previous loca-
tions or views should also be exploited. Here we could employ
revisitation detection and scale invariant scene geometry matching.
The revisiting problem of SLAM [Stewart et al. 2003] is that of
recognizing perceptually that a vehicle has returned to a previously
visited location. During outdoor flight we will solve this problem
using GPS localization, although incorporating perception into this
will be explored. A diagram of the ground system including use
pose prediction is shown in figure 7.



7.2 View Interpolation

In addition to model construction, the bulk of our focus will be on
the view interpolation system. New views will need to be synthe-
sized using image data from multiple cameras, corresponding to
yaw and roll of the user’s head. Additionally, temporal view in-
terpolation will need to be performed even as the quadrotor moves
while maintaining constant orientation. Effects from fast vehicle
motion and vibrations on video quality will also need to be cor-
rected, although whether this will need to be done on both the
ground and vehicle will be determined through future testing. To
accomplish all this we will leverage many of the approaches de-
scribed in section 2.
Motion Prediction: As mentioned in section 4, our video data link
could be a potential bottleneck in our pipeline, unless expensive
hardware is selected. We will approach this primarily on the soft-
ware side, and attempt latency compensation using vehicle motion
prediction. Provided a coarse geometric model, previous vehicle
pose data and velocity driven prediction will enable interpolation
of vehicle trajectory through our environment. Intermediate vehicle
positions will be calculated in this way, within the ROS framework.
With suitably long range depth data this approach will allow for
almost complete latency reduction. However, here we are implic-
itly assuming a static scene during transmission delays along with
a relatively open evironment. Occulusions and moving objects will
have to be handled separately, although this may be reserved for
future work. Head based motion prediction will also be employed
to reduce latency from projection onto model geometry, camera se-
lection, and vehicle control.
Image Stitching: To perform spatial view interpolation, that asso-
ciated with changes in head-pose, we will need to stitch parts of
separate camera images together. With a fully calibrated camera
array, and pre-computed relative transformations, pixel correspon-
dences can be found efficiently and the problem mainly reduces to
seamlessly blending the separate images. The simple blending ap-
proach described in [Szeliski and Kang 1995], will be our starting
point. The complete image will be mapped to a sphere and subsam-
pled based on the recently predicted virtual camera to produce a
perspective-correct image. This will, of course, require subsequent
warping to render stereo view will correct parallax.
Image Warping: We have briefly reviewed much of the work in-
volving reference image transformation, or warping. This general
approach will be employed in multiple parts of our view interpo-
lation pipeline. Backward and forward based mapping of images
will be especially useful in cases with rotationally dominant view
changes and when depth information is missing or unreliable. Ar-
tifact reduction will also benefit from the combined use of image
warping and projection onto scene geometry. An optimization ap-
proach relying on comparison of views from these two approaches
will likely be the most fruitfull. Composition of additional trans-
formations could provide further video stabilization, as mentioned
is section 2.5. Globally, transformations from motion will be de-
rived from cached image sequences as well as the trajectory track-
ing within ROS.

8 Airborne Subsystem

The airborne subsystem will perform depth-map generation, cam-
era selection and pixel tagging, and flight control. Although, fu-
ture testing will be required to determine the optimal division of
labor between the Jetson SBC and ground computer. Secondary
processes will include encoding video data, possible decoding of
head-tracking based control inputs, and encoding vehicle pose data
transmitted to the ground.
Depth from Stereo: As discussed in section 2.2, we have a num-
ber of options for approaching this problem. We will follow

Figure 8: Diagram of Airborne Subsystem

the multi-resolution approach, relying on plane-sweep to perform
stereo matching, which we will extend to multi-baseline stereo to
leverage additional cameras. Multiple baselines will provide more
robust depth-map construction, in turn reducing some of the con-
cerns around artifacts from areas with unreliable depth information.
This treatment of artifacts is similar to that with multi-view stereo
and multi-direction plane sweeping. Simplicity is also a factor in
pursuing this approach but we will also consider following the work
on depth-synthesis described in section 2.4.
Video Stabilization: With a direct serial link between the SBC and
flight controller we will perform onboard warping of images based
on vehicle motion. Here we will leverage the methods discussed
in section 2.5, both for motion-based warping and treating possi-
ble artifacts from rolling shutter cameras. However, with our initial
choice of the global shutter ZED stereo camera these particular is-
sues can be bypassed. Onboard video stabilization will be a coarse
initial treatment, with further refinment performed within the view
interpolation loop.
Camera Selection & Flight Control: Virtual camera pose, pre-
dicted onground within ROS, will be used to select nearest cam-
eras. This will need to be integrated with vehicle control to enable
full range image capture. If the virtual camera pose lies outside of
available view from current vehicle orientation yaw rotation will be
executed. The required control inputs for this motion will be de-
termined with the ROS-based PID loop running onground, as men-
tioned in section 7.1. A block diagram of the airborne system is
shown in figure 8.

9 Technical Challenges & Considerations

While the technologies used in the proposed system have been de-
veloped before in isolation, achieving the performance required to
make the system comfortable to use will require tight integration
and innovation going well beyond the state of the art.
Reprojection artifacts: Although the system is designed to keep the
camera viewpoints quite close to the users head position, nearby ob-
jects will show artifacts wherever depth information is inaccurate.
Hiding these errors so that they are not distracting will be impor-
tant to the overall user experience. The image-based rendering and
video stabilization literature contains many techniques that work
well, but will need to be adapted for real-time performance. As
mentioned previously, the work in [Woetzel and Koch 2004; Mer-



rell et al. 2007] will serve as a starting point for dealing with these
errors.
Stabilization: Under normal operation of the system, the users head
may be steady or moving very little while the vehicle moves slightly
around its target pose as the control system responds to small distur-
bances. Very accurate vehicle pose tracking is available in modern
UAV controllers, but we expect it will still not be accurate enough
to avoid an uncomfortable swimming sensation caused by residual
errors in vehicle tracking. Video stabilization, though it is usually
an offline process, is quite successful at creating stability in video
from unsteady cameras, with the key property that the motion to be
compensated comes from the video itself. We will need to import
ideas from the video stabilization literature, and close the stabiliza-
tion loop by using the video itself as an additional vehicle tracking
input. The work described in [Liu and Jin 2014] could provide a
suitable approach to this challenge, as composing additonal affine
transformations would integrate well with our proposed view syn-
thesis method.
Fast camera motion: The ill effects of camera motion can be re-
duced by using a relatively short exposure, which can also help
reduce system latency. However, in global-shutter cameras the last
pixel to be read out must still wait almost a full frame time be-
fore it is transmitted. Overall system latency can be reduced by
using rolling-shutter cameras, in which the delay between exposure
time and readout time is shorter and more consistent. However,
rolling-shutter cameras complicate the interpretation of the video
data, since every pixel has a different time and vehicle pose associ-
ated with it [Saurer et al. 2013]. Similar to handling stabilization,
an image warping based method, as described in [Stupich 2014],
will be our first line of attack here.
Latency Compensation: Using motion prediction for latency ab-
sorption is likely to produce some errors, similar to those encoun-
tered in dead-reckoning based inertial navigation. An approach to
handling these errors is described in [Kelly et al. 2011], wherein
the real vehicle is pushed to follow the virtual vehicle associated
with predicted motion. However, due to the non-linear dynamics of
the quadrotor additional efforts will be required to ensure vehicle
stability. Additonally, as the number of individual hardware com-
ponents increased further compression of video data, along with
possible changes in data structure, might be required to ensure com-
plete data tramission from air to ground.

10 Plans for Initial Stages

Our first objective for this project is building a simplified platform,
with minimal hardware. Full camera array scaling, predictively
sampling cameras and pixels, and eliminating projection and mo-
tion artifacts will be performed later in the project. A simple plat-
form using a ZED stero camera, a DIY project quadcopter, and an
oculus headset will be assembled. Initially we will seek to expose
the vehicle and head pose data, with head pose data from the Ocu-
lus software loop and vehicle pose data from either ground control
software or ROS middleware. Using minimal time resolution, im-
ages will be captured onboard and sent to the ground. Depth-map
generation onboard will be attempted, but further testing will be re-
quired to determine if maximum performance can be acheived this
way. This construction process will be shifted to the ground if nec-
essary. Cached camera images will be transformed according to
predicted vehicle and head motion, using depth map extrapolation
based on predicted vehicle trajectory. We hope to achieve a coarse
demonstration of view interpolation through motion prediction by
the end of the year. Fisheye lenses on quadcopter cameras will
provide wider FOV than the oculus screen and enable testing on
varying perspective integration. The camera array will eventually

be scaled up so that a FOV covering more than the half-sphere is
achieved. After this aforementioned preliminary demonstration we
will focus more on acounting for sampling artifacts, both temporal
and spatial, and eliminating undeirable effects from extraneous ve-
hicle motion. Refer to table 3 for a more detailed, albeit tenative,
timeline for project completion.

11 Summary

We have proposed an ambitious undertaking to develop a system
which can enable a pilot to control a quadcopter using a VR inter-
face. Wide and adjustable FOV will be accomodated using a com-
bination of careful camera sensor selection and configuration along
with a low-latency view synthesis and environment reconstruction
engine. Development of this engine will be guided by optimal use
of low-cost camera and communication equipment while exploit-
ing motion prediction techniques and accelerated processing using
commodity graphics hardware. We have given an overview of vary-
ing approaches to hardware selection and how these individual el-
ements will be combined for our complete system. Specific areas
which we expect to provide the biggest challenges have also been
described, and we have suggested some initial approaches for sur-
mounting these challenges. Ensuring a sufficiently realistic render-
ing, with responsive flexibility in perspective and fast refresh rates,
will be achieved through novel approaches to latency compensa-
tion and enhancements to existing approaches for error correction
and video stabilization. Our initial steps will consist of completing
camera integration with our already built quadcopter and establish-
ing an accesible data link for extracting video, head-tracking, and
vehicle pose data. Preliminary tests will be performed on sparse im-
age sampling interpolation using perspective transformations based
on vehicle pose updates. These tests will initially rely on sparse
depth sampling as well, possibly using only a single depth map for
a given test environment.
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