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ABSTRACT

The effects of volcanic eruptions on hurricane statistics are examined using two long

simulations from the Community Earth System Model (CESM) Last Millennium Ensemble

(LME). The first is an unforced control simulation, wherein all boundary conditions were

held constant at their 850 CE values (LMEcontrol). The second is a “fully forced” simulation

with time evolving radiative changes from volcanic, solar, and land use changes from 850 CE

through present (LMEforced). Large tropical volcanic eruptions produce the greatest change in

radiative forcing during this time period, which comprise the focus of this study. The Weather

Research and Forecasting (WRF) model is used to dynamically downscale 150 control years

of LMEcontrol and an additional 84 years of LMEforced for all mid-latitude volcanic eruptions

between 1100-1850 CE.  This time period was selected based on computational

considerations. For each eruption, two years are dynamically downscaled. 23 of these

volcanic eruptions are in the Northern Hemisphere and 19 are in the Southern Hemisphere.

The effectiveness of the downscaling methodology is examined by applying the same

downscaling approach to historical ERA-I reanalysis data and comparing the downscaled

storm tracks and intensities to the International Best Track Archive for Climate Stewardship

(IBTrACS) database. Hurricane statistics are then computed from both the downscaled

control and downscaled forced LME simulations. Results suggest moderate effects on

hurricanes from the average of all northern hemisphere eruptions, with the largest effects

being from the volcanoes with the most aerosol forcing. More specifically, reductions in

hurricane frequency, intensity, and lifetime following northern hemisphere eruptions are

apparent. Strong evidence is also shown for correlation between eruption strength and

changes in these diagnostics. The aggregate effect from both northern and southern

hemisphere eruptions is seen to be minor. While reductions in frequency, intensity, and
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lifetime from northern hemisphere eruptions occur, the opposite effect is observed from

southern hemisphere eruptions.

Keywords: hurricanes, volcanoes, solar geoengineering, last millennium ensemble
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1. Introduction

Hurricanes threaten human lives and livelihoods, inflict severe damage to property,

and incur billions of dollars in economic losses and recovery efforts. From 1992 through

2011, these events alone caused 42% of the catastrophe-insured losses in the United States

(King et al. 2013). The disruption from these extreme weather events will likely increase with

rising coastal populations and increasing value of infrastructure in coastal areas (Knutson et

al., 2010). Furthermore, anthropogenic climate change is already increasing and expected to

further increase average sea surface temperatures (SSTs) and sea level (IPCC, 2016; Kossin

et al. 2020). There is also a growing interest in determining if modifications to the incoming

flux of solar radiation could potentially offset key impacts expected to occur from rising

global temperature (Msadek et al., 2016). Whether or not such strategies are pursued, it is

critical to understand the relationship between hurricane statistics and climate responses to

past radiative forcings to help characterize the full range of plausible future influences on

hurricane activity.

The underlying relationship between hurricanes, radiative forcing, and climate change

remains an area of active inquiry (Ting et al., 2015; Elsner, 2006; IPCC, 2014). Several

modeling studies have suggested that, in general, future storms may pose more severe threats

to human well-being, infrastructure, and the economy (IPCC, 2014). For example, Villarini

and Vecchi (2013) and Emanuel (2013) used data from the Coupled Model Intercomparison

Project 5 (CMIP5) ensemble to evaluate storm intensity under climate change. Such studies

suggest that the number and intensity of the largest storms (e.g., category 4 and 5 hurricanes)

will increase in a warmer climate due primarily to an increase in SST. Recent evidence

(Kossin et al. 2020) demonstrates that TCs have significantly increased in intensity, though

this may be due to changing observational methodologies (Vecchi et al., 2021). Furthermore,
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Wang et al. (2018) and Strauss et al. (2021) have shown clear evidence for anthropogenic

influence on hurricane precipitation and flooding, respectively.

While we are interested in the relationship between volcanic eruptions and hurricanes

for its own sake, eruptions of the recent past and last millennium may also provide a glimpse

of the risks associated with “solar geoengineering” (SG), which has received increasing

attention recently as a possible strategy for slowing down the rate of global warming from

greenhouse gas emissions (Govindasamy and Caldeira, 2000; Caldeira and Wood, 2008;

Kravitz et al., 2014; MacMartin et al., 2019). That is, if global greenhouse gas reduction

efforts are insufficient in the coming decades, some researchers argue that interventions to the

climate system may be preferable to allowing global temperatures to increase (Govindasamy

and Caldeira, 2000; Caldeira and Wood, 2008; Kravitz et al., 2014; MacMartin et al., 2019).

While there are numerous SG strategies, stratospheric aerosol injection (SAI) in particular

mimics large volcanic eruptions (Jones et al., 2017; Crutzen 2006). Fundamentally, SAI

decreases the total amount of sunlight reaching the surface, which shares some similarity with

the effect of stratospheric aerosol injections from volcanic eruptions. In the stratosphere,

chemical and micro-physical processes convert SO2 into sub-micrometer sulfate particles.

The process has been observed in volcanic eruptions (Wilson et al., 1992; Bluth et al., 1992).

Although the particle sizes of artificial aerosols are not necessarily the same as volcanic

aerosols, the injection rate of artificial aerosols can be designed to roughly match volcanic

radiative forcing (Lacis and Mischenko 1995).

Volcanic eruptions result in an increased reflection of solar radiation, which can

strongly impact global temperatures, circulation patterns, and water cycles (Mass and

Portman, 1989; Robock, 2000; Swingedouw et al., 2017). Changes in tropical sea surface

temperature from SAI and volcanic eruptions would also similarly alter the position of the
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Inter Tropical Convergence Zone (ITCZ). For example, asymmetric volcanic forcings (e.g.,

from volcanic aerosols being concentrated in the stratosphere of one hemisphere) would alter

the position of the ITCZ for at least one year following an eruption (Jones et al., 2017). These

effects could potentially be even longer lasting if coupled interactions between the ocean and

atmosphere are engaged (Colose et al., 2016; Raible et al., 2016; Stevenson et al., 2016;

Schurer et al., 2014; Schurer et al., 2013). Given that hurricanes are sensitive to the regions

where moisture convergence occurs, it follows that such radiative effects on the global

circulation could influence hurricane statistics.

Comparisons between all-forcing and single-forcing last millennium model

simulations, as well as multiproxy paleoclimate constructions, have shown that large volcanic

eruptions were the dominant forcing during the pre-industrial record (Schurer et al., 2014;

Schurer et al., 2013). Studies have also shown that large tropical volcanic eruptions may have

long-lasting influences on the Atlantic multi-decadal oscillation and lead to El Niño-like

warming in the cold season after the eruption (Stevenson et al., 2016; Otto-Bliesner et al.,

2016). Such impacts could, in turn, affect hurricane statistics because these large-scale modes

help govern, in part, the frequency and intensity of storms occurring in any given year.

The historical record only provides a few clues about the effect of volcanic eruptions

on hurricanes or tropical cyclones (TCs). Nevertheless, modeling studies suggest that a

reduction in TC accumulated energy, TC duration, and lifetime maximum intensity occurs

following a volcanic eruption due to a decrease in SST and increase in upper

tropospheric/lower stratospheric temperature (Evan, 2012), all of which decreases TC

thermodynamic efficiency estimates (Emanuel et al., 2013). There is evidence that after some

eruptions, an asymmetric increase in stratospheric aerosols occurs in the hemisphere in which

the eruption took place, modifying the sea surface temperature gradient (Haywood et al.,
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2013). This gradient shifts the location of the Inter-tropical Convergence Zone (ITCZ) to the

opposite hemisphere of the eruption (Haywood et al., 2013), which hinders hurricane

development in the volcano’s own hemisphere due to a decrease in convection and increase in

wind shear. In fact, after the northern hemisphere eruptions of Mount Pinatubo (1991) and El

Chichón (1982), North Atlantic TC activity decreased, while TC activity increased following

the southern hemisphere eruption of Agung (1964) (Evan, 2012; Guevara-Murua et al.,

2015). More recently, Camargo and Polvani (2019) found no robust reduction of North

Atlantic tropical cyclone activity in recent observations or reanalysis. A reduction in potential

intensity (PI) is observed in CMIP5 and CESM large-ensemble historical simulations after

volcanic eruptions, though the decrease might be overestimated due to model bias.

Attempts to use paleoclimate indicators of past events (i.e., paleotempestology) are

limited by the paucity of appropriate archives and proxies (Liu et al., 2008; Mann et al., 2009;

Donnelly et al., 2015). Importantly, most paleorecords are commonly constrained to certain

geographic areas and currently provide limited information from other regions also

commonly affected by TCs, such as the Caribbean (Oliva et al., 2018). The use of

paleotempestological records is further limited because it is not possible to fully reconstruct

the tracks and lifetime of past TCs, most of which occur over the ocean (Emanuel, 2005).

These limitations preclude the extensive use of such data to evaluate the effects of major

volcanic eruptions on TC activity (Oliva et al., 2018; Yan et al., 2015; Korty et al., 2012).

Hurricanes are mesoscale features of the tropical circulation, and as such they depend

critically on quantities that are typically unresolvable in the coarse resolution grid of general

circulation models (GCMs), which typically have nominal horizontal resolutions on the order

of 50-200km. For example, the resolution of the CESM simulation used here is 1.9°x2.5°

which is roughly 211km by 278km at the equator. In order to overcome this limitation,
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authors typically follow one of three following approaches. The first approach is relatively

simple, and entails calculating thermodynamic metrics like PI at the native (coarse) resolution

of GCM output, which shows the maximum possible TC intensity given a vertical sounding

(Wang et al., 2018; Emanuel and Nolan, 2004; Tang and Camargo, 2014; Bister and Emanuel,

2002). A recent study (Yan et al., 2018) used the last millennium ensemble (LME) to

determine the theoretical effects of volcanic eruptions during the last 1000 years on PI. The

authors found a significant relationship lasting up to 3 years post-eruption, but also

“divergent” responses at the mid and high latitudes to the volcanic forcing. While this

approach is computationally efficient, it does not explicitly simulate TCs.

A second approach uses a statistical method, coupling synthetic tracks with an

axisymmetric hurricane model to downscale GCM output (Emanuel, 2006; Korty et al.,

2017). This approach is computationally lightweight, allowing for an investigation of

long-term variability in fully coupled GCM simulations of the last millennium (Kozar et al.,

2013).  While this method has a high spatial resolution in the vicinity of the eyewall, the

model is limited due to being axisymmetric and a hurricane being unable to feedback on

environmental conditions supplied to it.

The third approach employs a regional model to dynamically downscale GCM output

(Knutson et al., 2008). Dynamical downscaling typically requires high performance

computing infrastructure as well as boundary conditions from the “parent” GCM at six hourly

temporal resolution. It is therefore much more computationally expensive than the other two

methods, but it provides greater insight into the storms that would have occurred in each

GCM framework if it were run with sufficiently high spatial resolution. Dynamical

downscaling has been widely used to evaluate hurricane statistics during the 20th and 21st
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century (Emanuel, 2013), but it has not been widely adapted to the last millennium modeling

context.

In this study, we use WRF to dynamically downscale output from the LME to analyze

the effect of volcanic eruptions on hurricane intensity and lifetime. While not a perfect analog

to SAI, eruptions are important for understanding physical mechanisms and validating

models used in projecting the climate response to a possible SAI regime. Understanding the

effects of volcanic eruptions on hurricane dynamics during the last millennium can therefore

yield some insight into the possible (unintended) effects of SAI on these hazards.

2. Data and Methods

We dynamically downscale 234 total years from two members of the “Last Millennium

Ensemble” (Otto-Bliesner et al., 2016) with high resolution temporal output. The LME

consists of over two dozen fully forced and single forcing experiments from the record

spanning 850 CE to 2005. The LME was used because it provided an extensive readily

available dataset which could be easily downscaled. While monthly data was archived for

most of the members of the LME, only two simulations produced sufficiently high temporal

output to allow for high resolution dynamical downscaling using a regional model. One of

these runs was a fully forced last millennium simulation and the other was a long control

simulation with time invariant boundary conditions. We further evaluate the strengths and

limitations of our methodology by comparing downscaled reanalysis data to an historical

database of hurricane tracks and intensities. The details of this approach are described below.

a. Data

1) Last Millennium Ensemble
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Output from only two members of the LME were archived at sufficiently high

temporal resolution to be used as boundary conditions for WRF: a fully-forced simulation

with time varying boundary conditions (LMEforced) and a pre-industrial control simulation

with time invariant boundary conditions (LMEcontrol). Both simulations were run from 850 to

2005 CE using the Community Earth System Model (CESM) version 1.1, with the

Community Atmosphere Model (CAM) version 5. The resolution of the atmosphere and land

grids are nominally ∼2⁰, and ∼1⁰ for ocean and sea ice grids. While both runs were spun up

for 200 years under control conditions prior to 850 CE, LMEforced was forced with the

transient evolution of solar intensity, volcanic emissions, greenhouse gases, aerosols, and

land-use conditions, as well as insolation changes from planetary orbit and tilt. In the

LMEcontrol the boundary conditions were simply held fixed at their pre-industrial levels, thus

providing an unforced baseline for evaluating changes in hurricane statistics following large

volcanic eruptions.

2) ERA-I and IBTrACS

The native 2⁰ resolution of CAM5 in the LME simulations would make it impossible

to resolve hurricanes, hence we cannot evaluate the reliability of our downscaling

methodology (see section 2.b.1) with LME data alone. We therefore also downscaled the

ERA-Interim (ERA-I) (Dee et al., 2011) reanalysis data to retrospectively predict historical

hurricanes, then compared those predictions against the International Best Track Archive for

Climate Stewardship (IBTrACS) (Knapp et al., 2010) database. ERA-I comprises a reanalysis

dataset starting in 1979 and is available until August 2019. It uses four-dimensional

variational data assimilation (4DVAR), yielding a significant advantage over reanalysis

products using 3DVAR. This improves asynoptic data handling and allows for the influence

of an observation to be more strongly controlled by model dynamics (Schenkel and Hart,
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2011). This data assimilation method is coupled with the ECMWF Integrated Forecast Model

(IFS) to extrapolate fields between observations.

b. Methods

1) Dynamical Downscaling

We used WRF version 3.9 (WRFV3.9) (Skamarock et al., 2008) to dynamically

downscale archived data from LME simulations with the physics schemes shown in Table 1.

We also turned on heat and moisture surfaces fluxes (isfflx=1) and modified exchange

coefficients Cd and Ck according to surface winds (isftcflx=1). The physics schemes were

selected to satisfy a 15% difference threshold imposed between downscaled ERA-I and

IBTrACS, as quantified by our diagnostics suite.

WRF was run for a total of 234 simulation years over a domain spanning the North

American sector from 130°W to 15°E and the equator to 55°N, allowing us to identify and

track TCs in both the Atlantic and Eastern Pacific, even after making landfall in North

America.  In comparing LMEcontrol and LMEforced we focused on the effect of aerosol forcing

from volcanic eruptions. The aerosol mass signals from volcanic eruptions from 1100-1850

CE are shown in Figure 1, which is described in detail in Gao et al. (2008). We selected the

top 42 eruptions based on peak aerosol mass signal from LMEforced and ran WRF for two

years after each of these eruptions (84 simulation years total). LMEcontrol was run using WRF

for 150 years from 1000 to 1150 to provide a sufficient sample of non-volcanic natural

variability. The two year window after eruptions was selected because the residence time of

stratospheric aerosols is around one to two years (Crutzen 2006), and individual large

eruptions produce global or hemispheric cooling for an average of two or three years (Robock

2015). The LMEcontrol run was ensured to have sufficient length by analyzing the SST signal
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in frequency space (Figure 2). This analysis shows that using 100 years of control data is

sufficient to ensure we are not missing any low frequency variability.

We elected to use a horizontal grid spacing (∆X) of 30km. The 30km spacing

represents a compromise between our competing requirements for high resolution output and

a large sample size; each downscaled year used approximately 2,000 core hours on the

Cheyenne supercomputer totaling about 500,000 core hours for all years. While the 30km

resolution is somewhat coarse for resolving certain features of hurricanes, decreasing the

resolution further to 10km was much too expensive. The threefold increase in spatial

resolution would have translated into more than a 10-fold increase in core hours, or a 10-fold

reduction in the number of years simulated. All data from the LME were prepared for WRF

using procedure and code described in (Bruyere et al., 2015).

In our work, 6- hourly ERA-I data was also downscaled in WRF (using the same

domain and 30km resolution as the downscaled LME simulations) from 1995 to 2005 and

compared to the IBTrACS database for the same record. The comparison was made using the

suite of diagnostics described in section 2.b.3.

2) Tracking Tropical Cyclones with TSTORMS

We applied the TSTORMS (Zhao et al., 2009) tracking software, developed and

supported by GFDL, to analyze the results of downscaling. This routine uses minimum

pressure and maximum vorticity criteria to identify cyclones. Events are stored as “storms” if

they satisfy the following conditions for at least a preset number of days (ndays): (1) That the

maximum vorticity location is within a threshold radius (rcrit) of the minimum pressure

location, (2) that the core temperature of the cyclone is higher than outside of the core by a

threshold difference (twccrit) and (3) the difference in vertical distance between pressure
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levels at 200hPa and 1000hPa outside and inside the core exceeds a threshold value

(thickcrit).

As described in Walsh et al. (2015) and Zhao et al. (2009), tracking results are

sensitive to the details of the tracking scheme that is employed and especially the threshold

values selected for identifying storms (Horn et al., 2014). To identify sensitivity to threshold

values, we conducted a limited parameter sweep to determine optimal threshold values. We

calculated the difference between ERA-I downscaled output and IBTrACS data, for each set

of parameters, using the diagnostics described in section 2.b.3. We used the set of parameters

that achieved the minimum difference of ∼13.5%. This parameter set was rcrit = 1.5°, twccrit

= 1.0°C, thickcrit = 50m, and ndays = 2.

3. Diagnostics

Once hurricanes were identified in our downscaled LME data using TSTORMS, we

calculated 15 diagnostic metrics to evaluate differences in the statistics of storms in LMEcontrol

and those occurring after large eruptions in LMEforced. These diagnostics consist of fraction of

storms vs (1) month, (2) year, (3) latitude, (4) longitude, (5) maximum wind speed, (6)

minimum pressure, (7) decay time from maximum wind speed, (8) decay time from

minimum pressure, (9) power dissipation index (PDI), and (10) accumulated cyclone energy

(ACE). For example, (5) is a plot of the fraction of storms with a specific maximum wind

speed. Additionally, we calculated percentage of storms within (10) May to November, (11) 0

− 25N latitude, (12) 100W − 50W longitude, (13) 1020hPa − 980hPa pressure, (14)

0m/s−40m/s maximum wind speed, (15) 0−100hrs decay time from maximum wind speed,

(16) 0 − 100hrs decay time from minimum pressure, (17)  1.12*109-21.6*109m3/s2 PDI, and

(18) 0.25-3.75m2/s2 ACE. Mean values and quantile values (expressed as percentages) were

used to calculate fractional differences between LMEcontrol and LMEforced, and these differences
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were averaged over all diagnostics for a composite percentage difference. We refer to the

mean difference of diagnostics 1-8 as the total “average difference” and the mean difference

of diagnostics 9-15 as the total “percentage difference.” We also computed these metrics from

our downscaled ERA-I data to compare them to the IBTrACS database as a test of our

methodology, as described in sections 2.b.1 and 2.b.2.

The diagnostics described above were used as test statistics to evaluate whether

volcanic eruptions have a measurable effect on hurricane behavior. These diagnostics were

selected in order to assess hurricane behavior across a broad range of characteristics. The

diagnostics not only quantify hurricane behavior across the temporal and spatial domain, but

also assess more fundamental physical characteristics. In addition, the diagnostics can be

used with limited data consisting only of time, location, wind speed, and surface pressure.

This presents a versatile and efficient approach to capture both mean climatology and

structured hurricane behavior.

To determine whether volcanic eruptions affect hurricane statistics, we performed

two-sample KS-tests for distributions of each of the diagnostics. The two samples tested for

each diagnostic came from downscaled LMEcontrol and LMEforced data. Since LMEcontrol does

not include volcanic eruptions, agreement with LMEcontrol is confirmation of the null

hypothesis. We also performed two-sample Anderson-Darling tests to account for long tail

effects to which KS-tests are insensitive.

3. Results

We first show comparisons in TC tracks between downscaled output from ERA-I and

IBTrACS (Figure 3) as well as between LMEforced and LMEcontrol (Figure 4). The ERA-I vs.

IBTrACS comparison provides a baseline of whether WRF downscales TCs correctly, while
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the comparison between LMEforced and LMEcontrol is focused specifically on the effect of

aerosol forcing from volcanic eruptions. There is agreement in the location of TC tracks for

both comparisons, however the downscaled ERA-I underestimates TC intensity. This

underestimation is likely related to the downscaling resolution of 30km and the representation

of storms in ERA-I (Lui et al. 2021). There is also a notable lack of TC tracks in the Gulf of

Mexico for the downscaled ERA-I compared to the IBTrACS.

a. ERA-I vs. IBTrACS

As shown in Table 2, using our suite of diagnostics, we found an overall agreement

between ERA-I and IBTrACS of ∼86.5%, or a composite difference of ∼13.5%. 6-hourly

ERA-I data downscaled in WRF was compared to IBTrACS for the same time period (1995 −

2005). Notably, most hurricanes (97%) from downscaled ERA-I remain below a maximum

wind speed of 40 m/s, whereas 30% of storms from IBTrACS cross the 40 m/s maximum

wind speed. Diagnostic distributions for both ERA-I and IBTrACS are shown in Figure 6. It

is worth noting that the truncation of the domain in our ERA-I WRF simulations contributes

to the differences in latitude and longitude peaks seen in Figure 6. For example, according to

the IBTrACS database, some storms track beyond the WRF domain, while our downscaled

ERA-I simulations cut-off where the WRF domain ends. In Hodges et al. (2017), the authors

assess how well TCs are represented in reanalysis products. This work used two TC-track

matching approaches, referred to as (1) “direct matching” and (2) “objective matching”. The

authors further used several diagnostics in order to compare reanalysis TC tracks to those

found in IBTrACS. The objective matching approach, which employs a tracking algorithm

similar to TSTORMS, found an agreement of ∼60% with ERA-I in the Northern Hemisphere.

A simple “direct matching” implementation of our own achieved similar agreement. The

physics schemes in section 2.b.1 and threshold values in section 2.b.2 were used to satisfy a
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self-selected 15% difference threshold imposed between ERA-I and IBTrACS, as quantified

by our diagnostics suite.

b. Effect of Eruptions on Hurricane Statistics

1) Average Effect of Eruptions

Distributions of the diagnostics for LMEcontrol and LMEforced, with all 42 eruptions

included, are shown in Figure 7. The same diagnostic comparison for all northern hemisphere

eruptions is shown in Figure 8. All southern hemisphere eruptions are included in the

diagnostic comparison shown in Figure 9. A diagnostic comparison for the top 5 northern

hemisphere eruptions is shown in Figure 10. The top 5 southern hemisphere eruptions are

included in Figure 11. Performing two sample KS-tests and two-sample Anderson-Darling

tests on the distributions, along with fractional significance tests on the difference of mean

values, shows that the overall effect of all 42 eruptions is consistent with the null hypothesis.

That is, the effect of all 42 eruptions is consistent with the natural climate variability seen in

LMEcontrol (Table 3). However, when separating northern and southern hemisphere eruptions,

we observe a moderate effect on the frequency, lifetime, and intensity of hurricanes (Tables 4,

6). The KS-tests show a maximum difference between the two samples (D-value) and a

probability that the two samples are drawn from the same distribution (P-value). The

Anderson-Darling tests give the level at which the null hypothesis can be rejected. For

example, in the max wind row of Table 6, an Anderson-Darling test significance value of

0.001 shows that the null hypothesis can be rejected at the 0.1% level. For all northern

hemisphere eruptions (Table 4) we can reject the null hypothesis by the Anderson-Darling

test for intensity, PDI, and ACE at a maximum level of 13%. For both PDI and ACE we can

reject the null hypothesis at around the 2% level. We see similar results for all southern
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hemisphere eruptions in Table 6. The fractional significance tests (Tables 8-10) show the

fraction of TCs in LMEcontrol which exceed the LMEforced mean.  For example, in the max wind

row of Table 8, 53.2% of the TCs in LMEcontrol had stronger maximum wind speed than the

mean maximum wind speed of TCs in LMEforced. For all northern hemisphere eruptions, we

see in Table 9 that TCs have a lower lifetime, maximum intensity, and latitude than 60-70%

of TCs in LMEcontrol. We also find that TCs following northern hemisphere eruptions have a

lower PDI and ACE than 65% of TCs in the control. We observe the opposite effect for

southern hemisphere eruptions. We see in Table 10 that nearly 60% of TCs in the control

have longer lifetimes, larger maximum intensity, increased latitudes, and larger PDI/ACE

than TCs following southern hemisphere eruptions.

We also calculated pearson correlation coefficients on eruption strength and

diagnostic changes. To determine the significance of these correlation coefficients we also

calculated the 90%, 85%, and 80% confidence intervals. If the confidence interval for a

particular diagnostic (e.g. maximum wind speed) does not include zero correlation we can

say with at least 90%, 85%, or 80% confidence that there is a correlation between eruption

strength and that particular diagnostic. These confidence intervals are affected by the number

of eruptions in our analysis. The correlation coefficients for all eruptions, in both

hemispheres, are listed in Table 11. Here we see with at least 80% confidence that there is a

correlation between eruption strength and reduction in yearly hurricane number, intensity, and

lifetime. The correlation coefficients for all northern hemisphere eruptions are shown in Table

12. Again we see with at least 80% confidence that there is a correlation between eruption

strength and reduction in yearly hurricane number, intensity, and lifetime. The correlation

coefficients for all southern hemisphere eruptions are shown in Table 13. Here we again see

with at least 80% confidence there is a correlation between eruption strength and reduction in
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intensity. We also see with at least 90% confidence a correlation between eruption strength

and storms occurring earlier in the year. However, for the southern hemisphere we do not see

the same correlation between eruption strength and reduction in yearly number or lifetime.

For the southern hemisphere we see with at least 90% confidence a correlation between

eruption strength and storm occurring later in the year. The opposite effect is seen for

northern hemisphere eruptions.

2) Effect of Strongest Eruptions

Distributions of diagnostics with only the 5 strongest northern hemisphere eruptions

are shown in Figure 10. The same diagnostics for the 5 strongest southern hemisphere

eruptions are shown in Figure 11. The results of running KS-tests and Anderson-Darling tests

for the 5 strongest northern hemisphere eruptions are shown in Table 5. The results for the 5

strongest southern hemisphere eruptions are shown in Table 7.  For the 5 largest eruptions, in

both the northern and southern hemispheres we can reject the null hypothesis by the

Anderson-Darling test for nearly every diagnostic at a maximum level of 1%. The fractional

significance tests on the strongest northern hemisphere and southern hemisphere eruptions

are in Tables 9 and 10, respectively. We see in Table 9 that for the 5 strongest northern

hemisphere eruptions 70-80% of TCs have a lower maximum intensity, shorter lifetime, and

are found at a lower latitude than TCs in LMEcontrol. Following the strongest eruption (1258)

nearly 80-90% of TCs exhibit this reduced lifetime, maximum intensity, and latitude. We see

in Table 10 that for the 5 strongest southern hemisphere eruptions there is the opposite effect

to that of northern hemisphere eruptions. In this case nearly 60% of TCs following eruptions

have an increased lifetime, maximum intensity, and latitude. However, we still observe a

similar reduction in power dissipation index and accumulated cyclone energy.
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4. Discussion and Conclusion

In this work we have explored the effect of volcanic eruptions in the past millennium

on hurricane climatology. To do this we first validated our approach of downscaling CESM

data with WRF by comparing results of ERA-I downscaling with IBTrACS data. ERA-I

downscaling was only able to partially reproduce IBTrACS observations however,

underestimating observational intensities. On the other hand, frequency, limetime, and

location were faithfully reproduced in the ERA-I downscaling. The underestimation of

intensity could limit measurable effects in our intensity-based diagnostics. We also performed

a parameter search for our cyclone tracking algorithm in order to achieve high accuracy. We

then compared the results of downscaling our control data from CESM with forced data from

CESM, where we focused on the years in the forced data with volcanic eruptions.

Our results suggest that the overall effect of all eruptions on hurricane statistics is

small and not significant as compared to the control simulation (i.e., the null hypothesis).

However, we see a moderate reduction in frequency, lifetime, and maximum intensity for

hurricanes following northern hemisphere eruptions and the opposite for southern hemisphere

eruptions. Sufficiently strong northern hemisphere eruptions do result in lower annual

hurricane count, reduced intensity, and shorter lifetimes, significant at the 70-80th percentile.

This evidence is in the form of KS, Anderson-Darling, and fractional significance tests on

diagnostic distributions, as well as correlations between strength and changes in the mean

values of these diagnostics. The moderate increase in North Atlantic TC activity following

southern hemisphere eruptions substantiates previous research suggesting moisture

convergence increases in the hemisphere opposite of a volcanic eruption (e.g. Haywood et al.,

2013).
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Comparing the downscaled ERA-I results to hurricane tracks and intensities from

IBTrACS allowed us to evaluate the efficacy of our approach. Due to the inherently chaotic

nature of hurricane genesis, exact agreement between ERA-I and IBTrACS was not expected,

especially given the coarse 30km resolution of our downscaled simulations. Assessing our

approach was the primary objective in comparing ERA-I with IBTrACS. We expected ERA-I

to capture the observational record for mean climate and to provide good agreement between

downscaled results and overall hurricane statistics seen in IBTrACS. We avoided using

metrics like PI, since caution is urged in using PI to draw strong conclusions about tropical

cyclone projections as it fails to capture features seen in high-resolution climate models

(Wehner et al., 2015). Dynamical downscaling provides far greater detail in both the spatial

and temporal domain (Emanuel, 2013). This is evident in Figures 4 and 5 and the extensive

suite of diagnostics used to analyze downscaled results.

The results in this study have significant implications for hurricane development in a

potential future climate under an SAI regime. Although we analyzed the effects of an increase

in stratospheric aerosols from volcanic eruptions, the results are relevant to what may occur

under an SAI regime. Although analyses of impacts were once limited by historical

observation and coarser resolution, we were able to evaluate the direct influence of many

volcanic eruptions on individual hurricanes. For example, northern hemisphere eruptions in

the downscaled LMEforced experiment produced a slight reduction in hurricane frequency,

intensity, and lifetime. These impacts could be similarly felt if SAI was implemented,

removing some uncertainty associated with regional changes in tropical cyclone development

for the Northern Atlantic Ocean. Under a relatively strong SAI regime and according to our

results, hurricanes would likely decrease in frequency, lifetime, and intensity.
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Although our results show moderate correlation between eruption strength and certain

diagnostic measures, it is not necessarily true that stronger eruptions have a larger effect on

hurricane statistics. Additionally, research has shown large uncertainties in volcanic

reconstructions and seasonality of volcanic eruptions (Schmidt et al., 2012; Stevenson et al.,

2017; Raible et al., 2016). This presents a direction for further investigation. In this vein, one

could look at an ensemble of higher resolution GCM simulations on one or two of the

strongest volcanic eruptions. This eruption profile could be simulated both in the climate

conditions during the historical eruption as well as under future climate change conditions.

An ensemble average of simulations with perturbed initial conditions will allow us to home in

on the sole effect of aerosol forcing. This will also allow us to explore the question of

whether downscaling introduced any unknown biases. An ensemble under future climate

change conditions will allow us to explore the interplay of large aerosol forcing and strong

anthropogenic forcing.
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TABLES

Physics Scheme Name Parameter Value

(1) Micro-physics WSM6 mp_physics 6

(2) PBL YSU bl_pbl_physics 1

(3) Convection Kain-Fritsch cu_physics 1

(4) Longwave

radiation

RRTMG ra_lw_physics 4

(5) Shortwave

radiation

RRTMG ra_sw_physics 4

(6) Land surface Noah sf_surface_physics 2

(7) Surface Layer MM5 Similarity sf_sfclay_physics 91

(8) Ocean Mixed-layer sf_ocean_physics 1

Table 1. WRF physics parameterizations used for downscaling. (1) WRF single-moment

6-class (WSM6) for micro-physics (Hong and Lim, 2006), (2) Yonsei University (YSU) for

PBL (Hong et al., 2006), (3) Kain-Fritsch for convection (Kain, 2004), (4,5) rapid radiative

transfer model with greenhouse gases (RRTMG) for long-wave and short-wave radiation

(Iacono et al., 2008), (6) Noah for land surface (Tewari et al., 2002), (7) fifth generation

mesoscale model for surface layer (Paulson, 1970; Dyer and Hicks, 1970; Webb, 1970), and

(8) simple mixed-layer for ocean (Pollard et al., 1972).
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Averages ERA-I IBTrACS Percents ERA-I IBTrACS

month 7.65 8.24 May-Nov 0.88 0.99

yearly num 31.27 34.82 0-25 N 0.78 0.73

lat 18.23 21.39 100-50 W 0.65 0.44

lon -80.72 -88.38 0-40 m/s 0.97 0.70

max wind

(m/s)

30.26 34.87 1020-980

hPa

0.81 0.62

min pressure

(hPa)

988.56 979.65 (w) 0-100

hrs

0.94 0.91

w-life (hrs) 45.37 44.69 (p) 0-100 hrs 0.94 0.87

p-life (hrs) 44.02 52.53

Table 2. ERA-I vs. IBTrACS statistics for certain variables. For the first three columns:

month indicates the average time of year for hurricanes (for example, the average hurricane

occurred slightly after mid-July for ERA-I), yearly num is the average number of hurricanes,

lat is the average latitude of hurricanes, lon is the average longitude, max wind is the average

maximum wind speed (m/s), min pressure is the average minimum pressure (hPa), w-life is

the average time in hours from maximum wind speed to average wind speed of a hurricane

(represents decay time), p-life is the same as w-life except for minimum pressure to average

pressure of the storm.  For the second three columns: May-Nov indicates the percentage of

TCs that occur between May and November, 0-25N is the percent of storms that track

through this latitude range, 100-50W is the percent of storms that track through this range of

longitude, 0-40 m/s is the percent of storms that are in this wind intensity range, 1020-980
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hPa indicates the percent of storms in this pressure range, and (w) and (p) 0-100 hrs are the

percent of storms that decay within 100 hours.

All Eruptions

D-Value

All Eruptions

P-Value

All Eruptions

Significance

month 0.0 1.0 0.25

yearly num 0.016 1.0 0.25

lat 0.01 1.0 0.25

lon 0.002 1.0 0.25

max wind (m/s) 0.01 1.0 0.25

min pressure

(hPa)

0.006 1.0 0.25

w-life (hrs) 0.004 1.0 0.25

p-life (hrs) 0.0 1.0 0.25

PDI (m3/s2) 0.01 1.0 0.2

ACE (m2/s2) 0.01 1.0 0.25

Table 3. KS-tests show a maximum difference between the two samples (D-value) and a

probability that the two samples are drawn from the same distribution. Anderson-Darling

tests give the level (Significance) at which the null hypothesis can be rejected. The maximum

level given by the Anderson-Darling tests is 0.25. (Both Hemispheres)

All Eruptions

D-Value

All Eruptions

P-Value

All Eruptions

Significance
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month 0.0 1.0 0.25

yearly num 0.016 1.0 0.0425

lat 0.014 1.0 0.25

lon 0.016 1.0 0.25

max wind (m/s) 0.02 1.0 0.128

min pressure

(hPa)

0.026 1.0 0.068

w-life (hrs) 0.008 1.0 0.25

p-life (hrs) 0.008 1.0 0.25

PDI (m3/s2) 0.026 1.0 0.0175

ACE (m2/s2) 0.016 1.0 0.027

Table 4. KS-tests (D- and P-values) and Anderson-Darling tests (Significance) for all

eruptions. (Northern Hemisphere)

5 Strongest

Eruptions

D-Value

5 Strongest

Eruptions

P-Value

5 Eruptions

Significance

month 0.004 1.0 0.25

yearly num 0.048 0.6 0.001

lat 0.05 0.55 0.001

lon 0.048 0.6 0.001

max wind (m/s) 0.036 0.9 0.001
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min pressure

(hPa)

0.062 0.28 0.001

w-life (hrs) 0.026 1.0 0.0069

p-life (hrs) 0.024 1.0 0.0125

PDI (m3/s2) 0.05 0.55 0.001

ACE (m2/s2) 0.044 0.71 0.001

Table 5. KS-tests (D- and P-values) and Anderson-Darling tests (Significance) for 5 strongest

eruptions. (Northern Hemisphere)

All Eruptions

D-Value

All Eruptions

P-Value

All Eruptions

Significance

month 0.002 1.0 0.25

yearly num 0.01 1.0 0.0059

lat 0.022 1.0 0.119

lon 0.01 1.0 0.25

max wind (m/s) 0.016 1.0 0.25

min pressure

(hPa)

0.026 1.0 0.068

w-life (hrs) 0.008 1.0 0.25

p-life (hrs) 0.006 1.0 0.25

PDI (m3/s2) 0.024 1.0 0.03
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ACE (m2/s2) 0.022 1.0 0.015

Table 6. KS-tests (D- and P-values) and Anderson-Darling tests (Significance) for all

eruptions. (Southern Hemisphere)

5 Strongest

Eruptions

D-Value

5 Strongest

Eruptions

P-Value

5 Strongest

Eruptions

Significance

month 0.006 1.0 0.25

yearly num 0.048 0.6 0.001

lat 0.05 0.55 0.001

lon 0.044 0.71 0.001

max wind (m/s) 0.034 0.93 0.00129

min pressure

(hPa)

0.06 0.32 0.001

w-life (hrs) 0.026 1.0 0.0069

p-life (hrs) 0.02 1.0 0.055

PDI (m3/s2) 0.052 0.5 0.001

ACE (m2/s2) 0.042 0.76 0.001

Table 7. KS-tests (D- and P-values) and Anderson-Darling tests (Significance) for 5 strongest

eruptions. (Southern Hemisphere)
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All Eruptions

month 0.513

yearly num 0.435

lat 0.494

lon 0.435

max wind (m/s) 0.532

min pressure

(hPa)

0.494

w-life (hrs) 0.565

p-life (hrs) 0.506

PDI (m3/s2) 0.552

ACE (m2/s2) 0.558

Table 8. Fractional significance tests for all eruptions. The values indicate the fraction of

TCs in LMEcontrol which exceed the LMEforced mean, for a given variable. (Both Hemispheres)

All Eruptions 10 Strongest

Eruptions

5 Strongest

Eruptions

1258 Eruption

month 0.597 0.552 0.565 0.623

yearly num 0.539 0.539 0.435 0.753

lat 0.584 0.584 0.786 0.818
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lon 0.494 0.435 0.708 0.656

max wind (m/s) 0.662 0.721 0.766 0.877

min pressure

(hPa)

0.357 0.383 0.364 0.175

w-life (hrs) 0.662 0.675 0.721 0.63

p-life (hrs) 0.63 0.63 0.747 0.766

PDI (m3/s2) 0.656 0.714 0.799 0.89

ACE (m2/s2) 0.656 0.721 0.818 0.935

Table 9. Fractional significance tests for all eruptions, the 10 strongest eruptions, the 5 largest

eruptions, and the largest eruption (1258). The values indicate the fraction of TCs in

LMEcontrol which exceed the LMEforced mean, for a given variable. (Northern Hemisphere)

All Eruptions 10 Strongest

Eruptions

5 Strongest

Eruptions

1452 Eruption

month 0.422 0.292 0.377 0.156

yearly num 0.39 0.435 0.325 0.169

lat 0.403 0.338 0.396 0.649

lon 0.364 0.318 0.526 0.643

max wind (m/s) 0.429 0.416 0.331 0.461

min pressure

(hPa)

0.643 0.617 0.649 0.675
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w-life (hrs) 0.422 0.409 0.318 0.305

p-life (hrs) 0.377 0.409 0.37 0.357

PDI (m3/s2) 0.448 0.565 0.617 0.669

ACE (m2/s2) 0.455 0.578 0.61 0.721

Table 10. Fractional significance tests for all eruptions, the 10 strongest eruptions, the 5

largest eruptions, and the largest eruption (1452). The values indicate the fraction of TCs in

LMEcontrol which exceed the LMEforced mean, for a given variable. (Southern Hemisphere)

All Eruptions 90% Confidence

Interval

85%

Confidence

Interval

80%

Confidence

Interval

month -0.129 -0.3747,0.1337 -0.3455, 0.1005 -0.323, 0.0754

yearly num -0.2088 -0.4431,0.0522 -0.4157, 0.0187 -0.3946,

-0.0066

lat 0.0176 -0.2417,0.2746 -0.2098, 0.2432 -0.1855, 0.2193

lon 0.1959 -0.0657,0.4323 -0.0321, 0.4045 -0.0068, 0.3832

max wind (m/s) -0.3176 -0.5322,-0.0647 0.5077, -0.0981 -0.4886,

-0.1231

min pressure

(hPa)

0.2951 0.0399,0.5142 0.0734, 0.489 0.0985, 0.4695

w-life (hrs) -0.0875 -0.3381,0.1747 -0.308, 0.1419 -0.2849, 0.117
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p-life (hrs) -0.2927 -0.5122,

-0.0373

-0.487, -0.0708 0.4674, -0.0959

PDI (m3/s2) -0.3577 -0.5633,-0.1104 -0.5405,-0.1427 -0.5223,-0.1674

ACE (m2/s2) -0.3876 -0.5865,-0.1445 -0.5646,-0.1765 -0.5471,-0.2009

Table 11. Correlations between eruption strength and diagnostics for all eruptions in both

hemispheres.

All Eruptions 90%

Confidence

Interval

85%

Confidence

Interval

80%

Confidence

Interval

month -0.4093 -0.6655,

-0.0668

-0.6392,

-0.1123

0.6178, -0.147

yearly num -0.3267 -0.6088, 0.0287 -0.5791,

-0.0171

-0.5551,

-0.0524

lat 0.0669 -0.2921, 0.4094 -0.2496, 0.3705 -0.2162, 0.3396

lon 0.2673 -0.0936, 0.5661 -0.048, 0.5342 -0.0127, 0.5084

max wind (m/s) -0.293 -0.5848, 0.0659 -0.5538, 0.0201 -0.5288,

-0.0152

min pressure

(hPa)

0.2447 -0.1175, 0.5495 -0.0721, 0.5167 -0.0369, 0.4903

w-life (hrs) -0.0942 -0.432, 0.2667 -0.394, 0.2237 -0.3637, 0.1899
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p-life (hrs) -0.3255 -0.6079, 0.03 -0.5782,

-0.0158

-0.5542,

-0.0511

PDI (m3/s2) -0.3592 -0.6314,-0.0081 -0.6031,-0.0539 -0.5801,-0.0891

ACE (m2/s2) -0.4239 -0.6752,-0.0844 -0.6495,-0.1297 -0.6286,-0.1643

Table 12. Correlations between eruption strength and diagnostics for all eruptions in the

Northern Hemisphere.

All Eruptions 90%

Confidence

Interval

85%

Confidence

Interval

80%

Confidence

Interval

month 0.4059 0.0194, 0.6868 0.0706, 0.6588 0.1097, 0.6359

yearly num 0.0702 -0.3283, 0.4475 -0.2818, 0.4056 -0.2451, 0.3721

lat -0.0491 -0.4304, 0.3471 -0.3877, 0.3012 -0.3537, 0.2649

lon 0.095 -0.3059, 0.4672 -0.2587, 0.4262 -0.2215, 0.3934

max wind (m/s) -0.3469 -0.6488, 0.0493 -0.6181,

-0.0019

-0.5931,

-0.0414

min pressure

(hPa)

0.3676 -0.0256, 0.6623 0.0256, 0.6325 0.0651, 0.6083

w-life (hrs) 0.021 -0.3716, 0.4072 -0.3266, 0.3636 -0.2909, 0.3288

p-life (hrs) -0.1701 -0.5249, 0.235 -0.4867, 0.186 -0.456, 0.1476

PDI (m3/s2) -0.3782 -0.6692,0.0133 -0.6399,-0.0379 -0.616,-0.0773

ACE (m2/s2) -0.3546 -0.6538,0.0405 -0.6235,-0.0107 -0.5987,-0.0502
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Table 13.  Correlations between eruption strength and diagnostics for all eruptions in the

Southern Hemisphere.

FIGURES

Figure 1. Aerosol mass signals for volcanic eruptions from 1150-1850 CE in the Northern

Hemisphere.  The minimum, 10th largest, and 5th largest signals are shown with dashed

lines. All signals were selected as “all NH eruptions” years for this study.
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Figure 2. Aerosol mass signals for volcanic eruptions from 1150-1850 CE in the Southern

Hemisphere.  The minimum, 10th largest, and 5th largest signals are shown with dashed

lines. All signals were selected as “all SH eruptions” years for this study.
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Figure 3. LMEcontrol SST power spectrum.  100 years of control data is sufficient in capturing

low frequency content.
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Figure 4. Downscaled ERA-I hurricane tracks using TSTORMS (A) compared to the

IBTrACS database (B) for 1995 through 2005.
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Figure 5. Downscaled LMEforced hurricane storm tracks using TSTORMS (A) compared to

downscaled LMEcontrol using TSTORMS (B).
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Figure 6. Average number of storms by time of year (month), year, latitude, longitude,

average wind speed, average pressure, lifetime based on decay from maximum wind to

average wind, lifetime based on decay from minimum pressure to average pressure,

accumulated cyclone energy (ACE), and power dissipation index (PDI), between downscaled

ERA-I and IBTrACS for 1995 through 2005. Bin widths are 1°, 3°, 1m/s, 1mb for latitude,

6hr, and 6hr for longitude, wind speed, pressure, wind life, and pressure life respectively.

Distributions are normalized by the total number of storms.
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Figure 7. Same as Figure 6 except for a comparison between LMEforced and LMEcontrol for all

eruptions in both hemispheres.
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Figure 8. Same as Figure 6 except for a comparison between LMEforced and LMEcontrol for all

eruptions in the Northern Hemisphere.

57



Figure 9. Same as Figure 6 except for a comparison between LMEforced and LMEcontrol for all

eruptions in the Southern Hemisphere.
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Figure 10. Same as Figure 6 except for only the five strongest eruptions in the Northern

Hemisphere.
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Figure 11. Same as Figure 6 except for only the five strongest eruptions in the Southern

Hemisphere.
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