# DO VOLCANIC ERUPTIONS EFFECT HURRICANE STATISTICS?

Brandon Benton, Toby Ault March 21, 2019

## Why do we care?

- Eruptions emit aerosols can answer geoengineering questions
- Mitigation of hurricane impacts requires understanding factors involved
- Can provide insight into effects of warming (the negative of aerosol forcing)

# Methodology

- Data from CESM downscaled in WRF (control and forced 100 years of each)
- Parallelized downscaling for 10 years at a time
- WRF output used for cyclone tracking in TSTORMS
- ERAI also downscaled and compared to IBTRACS
- TSTORMS output for all runs gives probability distributions for different characteristics (wind speed, pressure, etc)
- Control and forced distributions compared using statistical diagnostics



- CESM data from LME runs used as boundary data input for WRF
- LME runs were from 850-2005
- Control runs absent eruptions
- Forced runs included eruptions reconstructed from ice core samples
- We used forced data from 2 years around 50 eruptions
- Control data from 1000-1100

## **CESM:** Eruptions





- WRF used to dynamically downscale CESM data
- 1500-2000 core hours per year of simulation (roughly one million core hours total, including pre and post processing and debugging)
- WRF physics schemes were selected to balance cyclone studies and future drought studies in NA
- Also based on matching downscaled ERAI with IBTRACS

## **ERAI and IBTRACS**

- To evaluate the accuracy of our approach we also used ERAI and IBTRACS data
- ERAI is reanalysis used in WRF downscaling
- IBTRACS is observational cyclone track data
- 1995-2005 used as comparison period
- Recent time period selected due to changes in observation technology

## TSTORMS

- GFDL cyclone tracking software used to find storms in downscaled output and track them
- Finds cyclones based on vorticity, pressure, and warm-core threshold values
- Stored as storm if criteria are met for threshold amount of time
- 40 different sets of threshold values were explored for best match between ERAI and IBTRACS

## Potential Intensity

- In addition to downscaling we looked at the potential intensity of CESM data – what we might expect from WRF
- Theoretical maximum intensity based on thermodynamic environment



## Diagnostics

- Calculated distributions of wind speed, pressure, lifetimes, location, and frequency
- KS-tests performed on forced vs control for each type of distribution
- Also compared distribution means and percentiles
- Significance tests done on distribution means
- Correlation coefficients computed for eruption strength vs each metric

### **Results: ERAI vs IBTRACS**



## Results: ERAI vs IBTRACS

| Averages                       | ERAI   | IBTRACS |
|--------------------------------|--------|---------|
| Month                          | 7.65   | 8.24    |
| Yearly Number                  | 31.27  | 34.82   |
| Latitude                       | 18.23  | 21.39   |
| Longitude                      | -80.72 | -88.38  |
| Max Wind (m/s)                 | 30.26  | 34.87   |
| Min Pressure (hPa)             | 988.56 | 979.65  |
| Max to Avg Wind Time (hrs)     | 45.37  | 44.69   |
| Min to Avg Pressure Time (hrs) | 44.02  | 52.53   |

## Results: ERAI vs IBTRACS

| Percentiles          | ERAI | IBTRACS |
|----------------------|------|---------|
| May-Nov              | 0.88 | 0.99    |
| 0-25N                | 0.78 | 0.73    |
| 100-50W              | 0.65 | 0.44    |
| 0-40 m/s             | 0.97 | 0.70    |
| 1020-980 hPa         | 0.81 | 0.62    |
| 0-100 hrs (wind)     | 0.94 | 0.91    |
| 0-100 hrs (pressure) | 0.94 | 0.87    |

#### **Results: Katrina and Mitch**

Hurricane Katrina 40\*N 35°N 30°N 25°N А 20°N 100°W 95°W 90°W 80°W 75°W 70°W 65°W 85°W 40°N 35°N 30"N 25°N В 20°N 75°W 65°W 100°W 95°W Wº08 85°W 80°W 70°W 40°N 35°N 30°N 25°N C 20\*N 100°W 95"W 90°W 85\*W 80°W 75\*W 70\*W 65\*W

Cat2 • Cat3

Cat4

Cat5

• TD TS

TD

TS

•

Cat1

٠

30\*N 25°N 20°N 15°N 10°N 100°W 95°W 90°W 85°W 80°W 75°W 70\*W 65°W 30°N 25°N 20"N 15"N 10°N 95°W W°08 75°W 100°W 85°W 80°W 70°W 65°W 30°N 25°N 20°N 15°N 10\*N 100°W 95"W 90°W 85\*W 80\*W 75\*W 70\*W 65\*W Cat1 Cat2 • Cat3 Cat5 • Cat4

**Hurricane Mitch** 

## Results: Control vs Forced (All Years)





Correlation coefficients show reduction in yearly number, intensity, and lifetime for forced data

Net effect consistent with control (null hypothesis)

# Results: Control vs Forced (All Years)

Correlations between control and forced mean differences and eruption strength

| <b>Correlation Tests</b> | Values |
|--------------------------|--------|
| Peak Month               | -0.11  |
| Yearly Number            | -0.23  |
| Avg Latitude             | 0.02   |
| Avg Longitude            | 0.22   |
| Max Wind Speed           | -0.32  |
| Min Pressure             | 0.29   |
| Max to Avg Wind Time     | -0.09  |
| Min to Avg Pressure Time | -0.28  |

# Results: Control vs Forced (All Years)

| KS-Tests            | <b>D-Value</b> | <b>P-Value</b> |
|---------------------|----------------|----------------|
| Month               | 0.0            | 1.0            |
| Yearly Number       | 0.006          | 1.0            |
| Latitude            | 0.004          | 1.0            |
| Longitude           | 0.0            | 1.0            |
| Max Wind            | 0.006          | 1.0            |
| Min Pressure        | 0.006          | 1.0            |
| Lifetime (wind)     | 0.002          | 1.0            |
| Lifetime (pressure) | 0.0            | 1.0            |

KS-tests strongly consistent with null hypothesis

# Results: Control vs Forced (All Years)

| Sig-Tests           | % Greater | % Less |
|---------------------|-----------|--------|
| Month               | 0.513     | 0.474  |
| Yearly Number       | 0.435     | 0.565  |
| Latitude            | 0.494     | 0.506  |
| Longitude           | 0.455     | 0.545  |
| Max Wind            | 0.519     | 0.474  |
| Min Pressure        | 0.513     | 0.487  |
| Lifetime (wind)     | 0.565     | 0.435  |
| Lifetime (pressure) | 0.506     | 0.494  |

Significance tests also strongly consistent with the null-hypothesis

#### Results: Control vs Forced (Strongest)



Null hypothesis can only be rejected at the 70-80% confidence limit

1213 and 1815 eruptions have ~0.13 average mean deviation from control

1213 and 1815 eruptions have effects in the 80-98% significance range

## Results: Control vs Forced (Strongest)

| KS-Tests            | <b>D-Value</b> | <b>P-Value</b> |
|---------------------|----------------|----------------|
| Month               | 0.004          | 1.0            |
| Yearly Number       | 0.018          | 1.0            |
| Latitude            | 0.036          | 0.9            |
| Longitude           | 0.038          | 0.86           |
| Max Wind            | 0.024          | 1.0            |
| Min Pressure        | 0.048          | 0.6            |
| Lifetime (wind)     | 0.014          | 1.0            |
| Lifetime (pressure) | 0.012          | 1.0            |

#### KS-tests suggest consistence with the null-hypothesis

## Results: Control vs Forced (Strongest)

| Sig-Tests           | % Greater | % Less |
|---------------------|-----------|--------|
| Month               | 0.461     | 0.513  |
| Yearly Number       | 0.584     | 0.351  |
| Latitude            | 0.487     | 0.513  |
| Longitude           | 0.318     | 0.682  |
| Max Wind            | 0.773     | 0.227  |
| Min Pressure        | 0.286     | 0.714  |
| Lifetime (wind)     | 0.675     | 0.325  |
| Lifetime (pressure) | 0.708     | 0.292  |

Lifetimes and intensities in the 70-80% significance range

# Results: 1213 Eruption

| Sig-Tests           | % Greater | % Less |
|---------------------|-----------|--------|
| Month               | 0.63      | 0.357  |
| Yearly Number       | 0.812     | 0.169  |
| Latitude            | 0.747     | 0.253  |
| Longitude           | 0.708     | 0.292  |
| Max Wind            | 1.0       | 0.0    |
| Min Pressure        | 0.0       | 1.0    |
| Lifetime (wind)     | 0.896     | 0.104  |
| Lifetime (pressure) | 0.981     | 0.019  |

Lifetimes, intensities, and frequency in the 80-100% significance range

# Results: 1815 Eruption

| Sig-Tests           | % Greater | % Less |
|---------------------|-----------|--------|
| Month               | 0.513     | 0.481  |
| Yearly Number       | 0.883     | 0.084  |
| Latitude            | 0.325     | 0.675  |
| Longitude           | 0.195     | 0.805  |
| Max Wind            | 0.831     | 0.169  |
| Min Pressure        | 0.058     | 0.942  |
| Lifetime (wind)     | 0.896     | 0.104  |
| Lifetime (pressure) | 0.942     | 0.058  |

Lifetimes, intensities, and frequency in the 80-95% significance range

## **Results: Potential Intensity**

#### PI Average Anomaly



All eruptions: average difference is ~0.01

10 Strongest Eruptions: average difference is ~0.02

## **Results: Potential Intensity**



## Summary

- Correlations indicate that eruptions have effect on intensity, lifetime, frequency
- Aggregate effect of all eruptions in last millennium is non-significant
- Eruptions exceeding threshold strength can have a measurable effect
- Further work exploring ensemble of large eruptions with different initial conditions and strength profiles to look at significance 1213 and 1815 eruptions